1,154 research outputs found

    Vacuum induced Stark shifts for quantum logic using a collective system in a high quality dispersive cavity

    Get PDF
    A collective system of atoms in a high quality cavity can be described by a nonlinear interaction which arises due to the Lamb shift of the energy levels due to the cavity vacuum [Agarwal et al., Phys. Rev. A 56, 2249 (1997)]. We show how this collective interaction can be used to perform quantum logic. In particular we produce schemes to realize CNOT gates not only for two-qubit but also for three-qubit systems. We also discuss realizations of Toffoli gates. Our effective Hamiltonian is also realized in other systems such as trapped ions or magnetic molecules

    Molecular orientation entanglement and temporal Bell-type inequalities

    Full text link
    We detail and extend the results of [Milman {\it et al.}, Phys. Rev. Lett. {\bf 99}, 130405 (2007)] on Bell-type inequalities based on correlations between measurements of continuous observables performed on trapped molecular systems. We show that for some observables with a continuous spectrum which is bounded, one is able to construct non-locality tests sharing common properties with those for two-level systems. The specific observable studied here is molecular spatial orientation, and it can be experimentally measured for single molecules, as required in our protocol. We also provide some useful general properties of the derived inequalities and study their robustness to noise. Finally, we detail possible experimental scenarii and analyze the role played by different experimental parameters.Comment: 10 pages and 5 figure

    Aperiodic Quantum Random Walks

    Full text link
    We generalize the quantum random walk protocol for a particle in a one-dimensional chain, by using several types of biased quantum coins, arranged in aperiodic sequences, in a manner that leads to a rich variety of possible wave function evolutions. Quasiperiodic sequences, following the Fibonacci prescription, are of particular interest, leading to a sub-ballistic wavefunction spreading. In contrast, random sequences leads to diffusive spreading, similar to the classical random walk behaviour. We also describe how to experimentally implement these aperiodic sequences.Comment: 4 pages and 4 figure

    Phase space measure concentration for an ideal gas

    Full text link
    We point out that a special case of an ideal gas exhibits concentration of the volume of its phase space, which is a sphere, around its equator in the thermodynamic limit. The rate of approach to the thermodynamic limit is determined. Our argument relies on the spherical isoperimetric inequality of L\'{e}vy and Gromov.Comment: 15 pages, No figures, Accepted by Modern Physics Letters
    • …
    corecore